Interplay between copy number, dosage compensation and expression noise in Drosophila
نویسندگان
چکیده
Gene copy number variations are associated with many disorders characterized by high phenotypic heterogeneity. Disease penetrance differs even in genetically identical twins. Can such heterogeneity arise, in part, from increased expression variability of one dose genes? While increased variability in the context of single cell gene expression is well recognized, our computational simulations indicated that in a multicellular organism intrinsic single cell level noise should cancel out and thus the impact of gene copy reduction on organismal level expression variability must be due to something else. To systematically examine the impact of gene dose reduction on expression variability in a multi-cellular organism, we performed experimental gene expression measurements in Drosophila DrosDel autosomal deficiency lines. Genome-wide analysis revealed that autosomal one dose genes have higher gene expression variability relative to two dose genes. In flies, gene dose reduction is often accompanied by dosage compensation at the gene expression level. Surprisingly, expression noise was increased by compensation. This increased compensation-dependent variability was found to be a property of one dose autosomal genes but not X-liked genes in males despite the fact that they too are dosage compensated, suggesting that sex chromosome dosage compensation also results in noise reduction. Previous studies attributed autosomal dosage compensation to feedback loops in interaction networks. Our results suggest that these feedback loops are not optimized to deliver consistent responses to gene deletion events and thus gene deletions can lead to heterogeneous responses even in the context of an identical genetic background. Additionally, we show that expression variation associated with reduced dose of transcription factors propagate through the gene interaction network, impacting a large number of Manuscript Click here to download Manuscript noise_PLOSG_Nov16_submitted.docx . CC-BY-ND 4.0 International license peer-reviewed) is the author/funder. It is made available under a The copyright holder for this preprint (which was no . http://dx.doi.org/10.1101/041038 doi: bioRxiv preprint first posted online Feb. 23, 2016;
منابع مشابه
Expression in Aneuploid Drosophila S2 Cells
Extensive departures from balanced gene dose in aneuploids are highly deleterious. However, we know very little about the relationship between gene copy number and expression in aneuploid cells. We determined copy number and transcript abundance (expression) genome-wide in Drosophila S2 cells by DNA-Seq and RNA-Seq. We found that S2 cells are aneuploid for >43 Mb of the genome, primarily in the...
متن کاملTranslational compensation of gene copy number alterations by aneuploidy in Drosophila melanogaster
Chromosomal or segmental aneuploidy-the gain or loss of whole or partial chromosomes-is typically deleterious for organisms, a hallmark of cancers, and only occasionally adaptive. To understand the cellular and organismal consequences of aneuploidy, it is important to determine how altered gene doses impact gene expression. Previous studies show that, for some Drosophila cell lines but not othe...
متن کاملGlobal analysis of X-chromosome dosage compensation
BACKGROUND Drosophila melanogaster females have two X chromosomes and two autosome sets (XX;AA), while males have a single X chromosome and two autosome sets (X;AA). Drosophila male somatic cells compensate for a single copy of the X chromosome by deploying male-specific-lethal (MSL) complexes that increase transcription from the X chromosome. Male germ cells lack MSL complexes, indicating that...
متن کاملDosage compensation of the Drosophila white gene requires both the X chromosome environment and multiple intragenic elements.
The X-linked white gene when transposed to autosomes retains only partial dosage compensation. One copy of the gene in males expresses more than one copy but less than two copies in females. When inserted in ectopic X chromosome sites, the mini-white gene of the CaspeR vector can be fully dosage compensated and can even achieve hyperdosage compensation, meaning that one copy in males gives more...
متن کاملSex-specific pattern formation during early Drosophila development.
The deleterious effects of different X-chromosome dosage in males and females are buffered by a process called dosage compensation, which in Drosophila is achieved through a doubling of X-linked transcription in males. The male-specific lethal complex mediates this process, but is known to act only after gastrulation. Recent work has shown that the transcription of X-linked genes is also upregu...
متن کامل